76范文网

导航栏 ×
你的位置: 范文网 > 范文大全 > 导航

【课件参考】 一元二次方程的解法教学反思(一篇)

发表时间:2022-08-08

工作和学习中,我们看过许多范文,优秀的范文能让我们感到受益匪浅,通过阅读范文我们可以提高语言组织能力。多阅读范文对自己会有很大的帮助,那么,你知道优秀范文要怎么写呢?为了让您在使用时更加简单方便,下面是小编整理的“【课件参考】 一元二次方程的解法教学反思(一篇)”,欢迎您阅读和收藏,并分享给身边的朋友!

(1)一元二次方程是研究现实世界数量关系和变化规律的重要模型,引课时从生活中常见的'“梯子问题”出发,根据学生应用勾股定理时所列方程的不同,引导学生对所列方程的解法展开讨论,进而获得开平方法。引课时力求体现“问题情境——建立数学模型——解释、应用与拓展”的模式,注重数学知识的形成与应用过程。

(2)如何配方是本节课的教学重点与难点,在进行这一块内容的教学时,教师提出具有一定跨度的问题串引导学生进行自主探索;提供充分探索与交流的空间;在巩固、应用配方法时,从一元二次方程二次项系数为1讲到二次项系数不为1的情况,从方程的配方讲到代数式的配方与证明,呈现形式丰富多彩,教学内容的编排螺旋式上升。这既提高了学生的学习兴趣,又加深了对所学知识的理解。

fw76.com延伸阅读

[精品]一元二次方程数学教学反思


76范文网相关栏目推荐:“一元二次方程数学教学反思”。

教师是火种,点燃了学生的心灵之火。每个老师在工作中都要编写教案。教案有助于教师明确授课目的,写教案应该考虑哪些问题?你可以读一下76范文网的编辑整理的一元二次方程数学教学反思,如果对这个话题感兴趣的话,请关注本站。

一元二次方程数学教学反思(篇1)

从本节课开始授一元二次方程的概念、解法及其应用。其中本堂课关于一元二次方程概念的介绍,其一般形式的写法是后续内容的基础,虽然简单但非常重要。

关于一元二次方程的概念的引入。我对课本做了两点变动:一是增加一例趣味性故事,引出数学问题,从而列出方程;二是将课本上关于生产总值的例子改成中考升学考上重点中学人数问题。以上变动主要是基于以下考虑:一是创设情境,激发学生的学习兴趣,又能学习从实际问题中归纳出数学模型;二是课本上的生产总值问题感觉离学生比较遥远。反思本节课的教学,我觉得有以下不足:

引入概念时的例子太多,有点难,在解应用题方面花费了一些时间,有点“喧宾夺主”,课前的例子应尽可能的简单,只要让学生能列出一元二次方程即可。

对于一元二次方程的一般形式,二次项系数、一次项系数、常数项这些内容,我觉得时间还比较少,应多加练习,特别是对后进生,如果一元二次方程已经写成一般形式,他们找二次项系数、一次项系数、常数项没有困难。如果需要进一步化简整理成一般形式,他们开始出错。问题出在他们基础没打好,化简整理过程中出现诸如移项时项的符号出错的问题,应多加练习指导。

一元二次方程数学教学反思(篇2)

一、教学之前的思考

基于对教材的分析,我把重心放在关注学生的学法上。通过分析本章的难点和所教班的实际情况,我认为教学的难点在于如何理顺配方法、公式法、分解因式法之间的关系以及如何利用一元二次方程解应用题。

二、实施教学所遇到的难点

在把握了本章的重难点之后,我把教学中心放在解一元二次方程的三种方法之间的联系上。在实际的教学过程中,学生虽然已经清楚三种方法之间的内在联系,但同时也存在以下两方面的问题:第一、基本运算不过关。绝大多数同学都知道解方程的方法,但却不能保证计算的准确性。这里也透露出新教材的一个特点:很重视学生思维上的培养,却忽视了基本计算能力的训练,似乎认为每个学生都能达到一学就会的理想境界。第二,解方程的方法不灵活。学习了三种方法之后,知道了公式法是最通用的方法,所以也就认为公式法绝对比配方法好用多了。但实际并非完全如此,通用并不意味着简单。

三、教学后的及时改进

为了解决"配方法、公式法"谁更好用?很多学生都明白公式法是在配方法上基础上的推导出来,并且有一个通用公式可算,所以学生潜意识已经认为公式法更简单

通过现场测试,很多同学又一次回到首先移项,接着只能用公式法的做法上。其实,在这里学生让没有抓住配方法的精髓。这两题依然是可以用配方法,而且很快就可以解出来。

四、反思

1、备课应该更加务实。

在以后教学中,我要吸取这一章教学的有益经验。不仅要抓整体,更要注意一些重要细节,及时发现教学工作中可能存在的隐性问题。例如:按照惯例,对于应用题学生的难点都在于如何找等量关系和列方程,故最容易忽视的是解方程的细节。例如上文中的例4,很多学生在学习公式法之后,都会很自然将方程的左边展开,继而使用公式法,从而解方程会变得十分复杂。

2、在教学中如何能够使学生学得简单,让学生的学习热情高涨。

五、教材的独到之处

教材有很多闪光点,让人耳目一新,极大调动了学生创造热情。例如课本上很多应用题都来源生活,贴近学生实际,增强了学生应用数学的意识和能力。

例如1:新华商场销售某种冰箱,每台进货价为2500元。市场调研表明:当销售价为2900远时,平均每天能销售8台;而当销售价每降低50元时,平均每天就能多售出4台。商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?

2、如图,在一块长92米、宽60米的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成面积均为885平方米的6个矩形小块,水渠应挖多宽?

3、某农场要建一个长方形的养鸡场,鸡场的一边*墙(墙长25米),另三边用木栏围成,木栏长40米。

(1)鸡场的面积能达到180平方米吗?能达到200平方米吗?

(2)鸡场的面积能达到250平方米吗?

如果能,请你给出设计方案;如果不能,请说明理由。

在这里我重点谈谈第3题;这是一个很现实的生活问题,很能调动学生的创造热情,但同时很容易被生活中的经验所蒙蔽。很多同学认为,要使鸡场的面积最大,当然要把25米的墙完全利用起来,所以最大的面积应该是平方米,故很快可以解决问题,鸡场的面积能达到180平方米,不可能达到200平方米。实际上当真如此吗?这时引导同学利用数学知识,构建数学模型来解决问题。问题中设问"能达到的200平方米吗?"。设这时的养鸡场宽为X米,则养鸡场的长为(40-2X)米,根据题意,可得到,经过计算,,从而得出一个出乎意料的结果:不仅能达到200平方米,而且养鸡场的墙体不需完全利用,只需要它的一部分,这时学生体会到,即使整面墙都用上,它的面积并不是最大的。

一元二次方程数学教学反思(篇3)

学好一元二次方程,重要的是要学会背公式。除了最主要的求根公式你要背熟外,就是要学会总结不同方程解决形式。形如x+2bx+b=0,你要能熟练的将其变为(x+b)=0这样的形式;形如x+(a+b)x+ab=0的形式,你要熟练将其变为(x+a)(x+b)=0;再高阶的,二次项前面也有系数的,你也要学会变形。总之掌握将普通二项式变为两个一项式的乘积是你必须要掌握的。当你变不了的时候,你就要使用求根公式来解决。

方程类问题都是如此求解的。二次方程求解方法的核心,是使其转变为一次方程来求解。三次方程这是转变为二次方程与一次方程的乘积求解。越往后越是这样。求解的主旨是降幂。使高次项变为多个低次项的乘积是求解方程的指导思想。可能你只是一个小学生或是初中生,你不一定明白这个道理,但是随着学习的深入,你要去思考。我给出了解决的一般路径,但要熟练的掌握仍旧需要不停的解题做题,通过练习来掌握。一元二次方程并不难,相信以你的聪明与勤奋一定会早日掌握的。

一元二次方程数学教学反思(篇4)

教材分析

一元二次方程是九年级数学一个非常重要的内容,是首次出现的高于一次的方程。其解法的策略就是将其“降次”转化为一次方程。通过解比较简单的一元二次方程,引导学生认识直接开平方法解方程,再通过对比一边为完全平方形式的方程,使学生认识配方法的基本原理并掌握其具体方法,为后面的求根公式做准备。

学情分析

1. 教学对象:本班学生58人,这个班的特点是两头力量少,中间力量多,基础知识薄弱。但学习气氛较浓,能调动学生学习数学的积极性和挑战性

2. 学生的认知分析:学生虽然具备初步的解题思路,但缺乏融会贯通和应用的能力。应适当地创设一些难易、新旧相结合的问题,加强学生对知识的应用。在学习过程中培养学生自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验。

教学目标

1、知识与技能:学生会用直接开平方法解方程,x2=p,x2+2mx+m2=p(p≥0)建立一元二次方程模型解决简单的实际问题,循序渐进的让学生掌握直接开平方法的做法,通过对比学会配方法解数字系数的一元二次方程

2情感目标:渗透转化思想,掌握一些转化技能

教学重点和难点

重点:直接开平方法,简单的配方法

难点:配方,把一元二次方程转化为形如(x-a)2=b的过程

一元二次方程数学教学反思(篇5)

方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。

1、这一节课的主要内容是要求学生掌握一元二次方程的定义,定义主要从这两个方面来掌握,首先等号的两边是整式,且只含有一个未知数,其次未知数的最高次数是2。要是单纯从知识点上来看的话,这一节课的内容很少,教师可以用很短的时间讲完这节课,但是教材的设计是从实际问题出发,要求学生先列方程,将实际问题的方程化为一般的形式后去观察方程的形式,通过观察找到几个方程的共同点,再由学生总结一元二次方程的定义,表面上看教材的安排很罗嗦,其实这样安排的好处就是将难点分散了,因为一元二次方程这一章有一个教学难点就是列方程解应用题,在平时的教学中将难点分散对于学生的学习应该有很大的帮助。

2、在求一元二次方程的各项系数的时候,有一个地方没有处理好,本来按照习惯一般是将二次项系数化为正数,但是在解题中就算二次项系数是负数,给出的答案也是正确的,这样的问题最好是给出方程的一般形式后,叫学生来求各项系数比较好一点。

一元二次方程数学教学反思(篇6)

在日常生活中,许多问题都可以通过建立一元二次方程这个模型进行求解,然后回到实践问题中进行解释和检验,从而体会数学建模的思想方法,解决这类问题的关键是弄清实际问题中所包含的数量关系。

本节内容教材提供了与生活密切相关,且有一定思考和探究性的问题,所以在教学中我让学生综合已有的知识,经过自主探索和合作交流尝试解决,提高学生的思维品质和进行探究学习的能力。主要有以下几个成功之处:

1、让学生自主交流方法,充分展示学生不同层次的思维,互相学习,互相促进,从而创建平等、轻松的学习氛围。

在出示了例7后,我提示学生解决此类问题可以自己画出草图,分析题目中的等量关系,学生根据题意很快可以画出图形,然后,我让他们找出题目中可以写等量关系的条件,根据条件写出文字的等量关系。在这个环节有的学生遇到了困难,于是,我就让他们互相讨论,通过讨论,大部分学生可以写出等量关系,我再让会的学生说出理由。在这个教学过程中,学生互相学习,互相促进,轻松地学会了知识。

2、让学生自主归纳,总结方法,尊重学生的个性选择,学生的集体智慧更符合学生自己的口味,比教师说教更易于被学生接受。

例7的解答还有一种更简单的方法,我让学生观察图形,在图形上做文章,还是让他们自主探索,讨论,很快有一部分学生想到了把图形中的道路平移到一边的方法,这样就把种植面积集中起来,方程就好列了。这时,我就让学生上来讲述方法。学生用自己的语言讲述,这样其他人接受起来更快一些。并且,学生还总结此类问题的解决方法——将图形平移,在以下练习的几道题中都能得心应手的解答了。由此可见,通过自己思考学到的知识能够灵活应用,且掌握的好。

在这节课的教学中也存在一些不足之处,教材中在例题之前设计了一个应用,在解决这个问题上耽误了时间,延误了下面的教学,导致设计的练习题没有做完,所以在下次教学时,这个应用问题只让学生列出方程即可,不必在解答上花费时间。另外,练习设计过于单一,只涉及到了例题这种类型的练习,变式练习题少,所以,在下次教学时,要设计两道不同题型的题目。

由这节课的教学我领悟到,数学学习是学生自己建构数学知识的活动,学生应该主动探索知识的建构者,而不是模仿者,教学应促进学生主体的主动建构,离开了学生积极主动的学习,教师讲得再好,也会经常出现“教师讲完了,学生仍不会”的现象。所以,在以后的教学中,我要更有意识的多给学生自主探索、合作交流的机会,更加激发学生的学习积极性,使学生在他们的最近发展区发展。

一元二次方程数学教学反思(篇7)

一元二次方程的应用是在学习了前面的一元二次方程的解法的基础上,结合实际问题,讨论了如何分析数量关系,利用相等关系来列方程,以及如何解答。

列方程解决实际问题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

在本章教学中我注意分散教学难点,比如说,在学习增长率问题时,我先设计了这样一组练习:一个车间二月份生产零件500个,三月份比二月份增产10%,三月份生产-----------个零件,如果四月份想再增产10%,四月份生产零件-----------个。如果增产的百分率是x,那三月份和四月份各能生产零件多少个?通过分散教学难点,引导学生理解题意,从而达到满意的教学效果。

在本章教学中我还注意对学生进行学法的指导。比如说,在做习题7.12第2题时,有的同学想象不出图形,就应引导他们画出示意图;在比如学习最后一个例题时,面对那么多的量,并且是运动中的量,许多学生无从下手,此时就要引导学生把量在图形中先标示出来,在慢慢分析题中的数量关系。在分析问题时,要强调当设完未知数,那它就是已知数,参与量的标示。

总之,在教学中通过学生的自主探究、小组间的合作交流、教师的及时点拨,进一步提高学生分析问题、解决问题的能力。

一元二次方程数学教学反思(篇8)

《6.3二次函数与一元二次函数》的第一课时,主要是用方程的方法研究二次函数图像与x轴交点的个数及交点的求法问题。简而言之,就是借助数形结合的方法解决问题,这是本节课的难点。一方面学生要能够根据二次函数y=ax2+bx+c(a≠0)图像得到一元二次方程ax2+bx+c=0(a≠0)的根,即基本的读图能力;另一方面要能够根据一元二次方程ax2+bx+c=0(a≠0)来判断二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数,即会依据条件画图的能力。

这两方面对于函数知识的学习都尤其重要,所以我将此作为本节课的重要任务,渗透在探究二次函数与一元二次方程的关系的过程中,并通过训练使学生进一步理解数形结合的思想,掌握运用的方法。作为新授课,尤其要注重知识生成过程的设计。

数学课程标准指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”对于教材的内容不能全盘复制,而应该以学生的现实生活为背景,已有的知识积累、学习经验和思维方式为基础,随着课堂活动的不断深入而逐步形成的。因此,本节课的教学中,我借助学生已有的判断一元二次方程ax2+bx+c=0根的情况(a≠0)和二次函数y=ax2+bx+c(a≠0)图象性质的知识基础,将图象与x轴交点的坐标,转化为已知函数值为零,求自变量的值的问题,即解一元二次方程。由“图”过渡到“数”,直观形象,学生易于理解。通过学生自己的思维方式进行自主探索、交流,去发现二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数和一元二次方程ax2+bx+c=0(a≠0)的根的情况的关系,能够实现课堂学习的自主化,调动学生深层思维的思考,让学生在“再创造”中学习新知,有利于知识的生成,提高课堂的教学效果,体现新课改中将学生作为课堂的主体、学习的主人的教育教学理念。知识生成过程中,教师做好课堂的引导者和组织者,适时、科学的进行启发、点拨。这就需要认真研读教材,设计合理有效的问题或是问题串,帮助学生“再创造”。

问题的设计要注意前后的呼应和连贯。比如本节课的知识生成是:直接借助根的判别式b2-4ac,来判断二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的情况。这就需要在讲解图象与x轴交点的横坐标即是对应一元二次方程的根后,设计以下的问题有效过渡:(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点有几种情况?(2)一元二次方程ax2+bx+c=0(a≠0)的根有几种情况,借助什么方法来判断呢?这就为后续的归纳做了有效的铺垫,使得新知的生成水到渠成。本节课,在引入问题的设计中做的不够充分,知识的生成没能有效呼应,没有达到预设的课堂效果。我要在以后的课堂教学中,加强对教材的研读,合理把握重难点,在情景引入和知识生成的问题设计上多下功夫,力争使自己的教育教学水平有新的突破。

看过九年级数学二次函数与一元二次方程教学反思的还看了:

1.九年级数学二次函数与一元二次方程同步练习题

2.九年级数学教学工作反思

3.九年级数学实际问题与二次函数同步练习题

4.一元二次方程初三数学单元试题附答案详解

一元二次方程数学教学反思(篇9)

问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:

1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?

(学生很自然列方程解决)

改换题目条件和问题:

2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。

于是学生很容易完成下列求解。

解:设该商品定价为x元时,可获得利润为y元

依题意得:y=(x-40)?〔300-10(x-60)〕

=-10x2+1300x-36000

=-10(x-65)2+6250300-10(x-60)≥0

当x=65时,函数有最大值。得x≤90

(40≤x≤90)

即该商品定价65元时,可获得最大利润。

增加难度,即原例题

3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。

一元二次方程数学教学反思(篇10)

这是一节复习一元二次方程解法的课,主要通过复习一元二次方程的解法,了解学生对知识的掌握情况,加强对学生的学法指导。

本章内容中重点为一元二次方程的解法和应用。我将复习设为两节,第一节重点讲解法。思路:以学生为主体,注重学生自我发现,了解自己的不足,同时,注意加强运算。总的设计思路较好,过程中有一个地方费时较多,主要是我没有吃透“课标”,对于一元二次方程公式法的推导过程不应让学生推导,因为在此费时过多,所以最后的小测试没来得及做。另为,在练习中解方程时,由于时间关系,没有让学生比较,而是由我代办,这样效果反而不好。

通过复习,我感到,在复习时一定要好好研究课标,吃透课标。另为,注意学生的分析,教师不要代办太多。

看过九年级数学一元二次方程的解法教学反思的还看了:

一元二次方程教学反思简短900字


教师是学生的朋友,也是在心灵和智慧上的引路人,很多教师授课都习惯于借助教案。教案的设定对于课堂时间的划分能够做到更加科学性,合理性。基于您的需求,76范文网小编为您整理一篇《一元二次方程教学反思简短》,让我们都努力变得更加优秀吧!

一元二次方程教学反思简短 篇1

一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于它的概念,学生很容易理解。通过这节课的教学我有如下几点感想:

一、引导学生观察、类比、联想已学的一元一次方程、二元一次方程,归纳、总结出一元二次方程,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出觉得意外,让学生跳一跳就可以摘到桃子。

二、合理选材,优化教学,在教学中,忠实于教材,要研究的基础上使用教材。教学方法合理化,不拘于形式,通过一系列的活动来展开教学,发展了学生的思维能力,增强了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

三、整节课的设计以落实双基为起点,培养学生独立思考的能力,重视知识和产生过程,关注人的发展。无论是教学环节设计,还是作业的布置上,我注意分层次教学,让每一个学生都得到不同的发展

四、为了真正做到有效的合作学习,我在活动中大胆地让学生自主完成。先让学生把问题提出来,然后让学生带着问题去讨论,这样学生在讨论时就有目的,就会事半功倍。也让不同层次的学生得到不同的发展。也符合新课程的教学理念。

不足之处:引入方面有待加强,不够激发学生的学习兴趣;板书还有待加强,应给学生做出示范;给学生思考的时间还不够。

一元二次方程教学反思简短 篇2

这是一节复习一元二次方程解法的课,主要通过复习一元二次方程的解法,了解学生对知识的掌握情况,加强对学生的学法指导。

本章内容中重点为一元二次方程的解法和应用。我将复习设为两节,第一节重点讲解法。思路:以学生为主体,注重学生自我发现,了解自己的不足,同时,注意加强运算。总的设计思路较好,过程中有一个地方费时较多,主要是我没有吃透“课标”,对于一元二次方程公式法的推导过程不应让学生推导,因为在此费时过多,所以最后的小测试没来得及做。另为,在练习中解方程时,由于时间关系,没有让学生比较,而是由我代办,这样效果反而不好。

通过复习,我感到,在复习时一定要好好研究课标,吃透课标。另为,注意学生的分析,教师不要代办太多。

看过九年级数学一元二次方程的解法教学反思的还看了:

一元二次方程教学反思简短 篇3

新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。

这节课是“列一元二次方程解应用题(1)”,讲授在几何问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运。既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用。

通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:

一、本节课第一个例题,是面积问题中的一个典型例题,我在引导学生解决此题之后,总结了解一元二次应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。

二、练习1是例题1的变式与提高,练习2是例题2的变式与提高。 通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力逐级上升,这是这节课中的一大亮点。在讲完例题的基础上,将更多教学时间留给学生,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。

三、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。

四、课堂上多给学生展示的机会,比如我所设计练习题可用不同方法去求解,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。

五、需改进的方面:

1.由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如练习题1有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示.

2.只考虑扑捉学生的思维亮点,一生列错了方程,老师没有给予及时纠正。导致使一些同学陷入误区.

3.下课后很多学生和老师沟通课上一生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。

一元二次方程教学反思简短 篇4

一元二次方程进行了单元测试,虽然是下午第四节自习时间作业”加班加点直到晚上10:30,没有耽误第二天的第一节测试的,但是为了能给学生及时地反馈,我也做起了“家庭课讲评。

五班优秀人数25人,而六班只有12人,及格率也相差很大。分析其中原因,近段时间以来六班纪律涣散占很大比重。自分班以来,我深感肩上的担子重,责任大,但我坚信勤能补拙,所以我比以往更用心更努力,可以说用上了十二分的力气和心劲。但是学生的表现却令我失望,态度不端正不拿学习当回事,我行我素,精神麻木。其次,学习不扎实,思维方法不严密。反复强调的知识点也丢三落四,漏洞百出。

痛定思痛,只有老师的努力只能成功了一半,下一步的任务是强抓学生,端正他们的态度,稳定课堂秩序。

铁的纪律才能出铁的成绩,要提高六班成绩,必须整顿班风,严明纪律,创造一个良好的学习环境。

一元二次方程教学反思简短 篇5

《6.3二次函数与一元二次函数》的第一课时,主要是用方程的方法研究二次函数图像与x轴交点的个数及交点的求法问题。简而言之,就是借助数形结合的方法解决问题,这是本节课的难点。一方面学生要能够根据二次函数y=ax2+bx+c(a≠0)图像得到一元二次方程ax2+bx+c=0(a≠0)的根,即基本的读图能力;另一方面要能够根据一元二次方程ax2+bx+c=0(a≠0)来判断二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数,即会依据条件画图的能力。

这两方面对于函数知识的学习都尤其重要,所以我将此作为本节课的重要任务,渗透在探究二次函数与一元二次方程的关系的过程中,并通过训练使学生进一步理解数形结合的思想,掌握运用的方法。作为新授课,尤其要注重知识生成过程的设计。

数学课程标准指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”对于教材的内容不能全盘复制,而应该以学生的现实生活为背景,已有的知识积累、学习经验和思维方式为基础,随着课堂活动的不断深入而逐步形成的。因此,本节课的教学中,我借助学生已有的判断一元二次方程ax2+bx+c=0根的情况(a≠0)和二次函数y=ax2+bx+c(a≠0)图象性质的知识基础,将图象与x轴交点的坐标,转化为已知函数值为零,求自变量的值的问题,即解一元二次方程。由“图”过渡到“数”,直观形象,学生易于理解。通过学生自己的思维方式进行自主探索、交流,去发现二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数和一元二次方程ax2+bx+c=0(a≠0)的根的情况的关系,能够实现课堂学习的自主化,调动学生深层思维的思考,让学生在“再创造”中学习新知,有利于知识的生成,提高课堂的教学效果,体现新课改中将学生作为课堂的主体、学习的主人的教育教学理念。知识生成过程中,教师做好课堂的引导者和组织者,适时、科学的进行启发、点拨。这就需要认真研读教材,设计合理有效的问题或是问题串,帮助学生“再创造”。

问题的设计要注意前后的呼应和连贯。比如本节课的知识生成是:直接借助根的判别式b2-4ac,来判断二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的情况。这就需要在讲解图象与x轴交点的横坐标即是对应一元二次方程的根后,设计以下的问题有效过渡:(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点有几种情况?(2)一元二次方程ax2+bx+c=0(a≠0)的根有几种情况,借助什么方法来判断呢?这就为后续的归纳做了有效的铺垫,使得新知的生成水到渠成。本节课,在引入问题的设计中做的不够充分,知识的生成没能有效呼应,没有达到预设的课堂效果。我要在以后的课堂教学中,加强对教材的研读,合理把握重难点,在情景引入和知识生成的问题设计上多下功夫,力争使自己的教育教学水平有新的突破。

看过九年级数学二次函数与一元二次方程教学反思的还看了:

1.九年级数学二次函数与一元二次方程同步练习题

2.九年级数学教学工作反思

3.九年级数学实际问题与二次函数同步练习题

4.一元二次方程初三数学单元试题附答案详解

一元二次方程教学反思简短 篇6

一、教学之前的思考

基于对教材的分析,我把重心放在关注学生的学法上。通过分析本章的难点和所教班的实际情况,我认为教学的难点在于如何理顺配方法、公式法、分解因式法之间的关系以及如何利用一元二次方程解应用题。

二、实施教学所遇到的难点

在把握了本章的重难点之后,我把教学中心放在解一元二次方程的三种方法之间的联系上。在实际的教学过程中,学生虽然已经清楚三种方法之间的内在联系,但同时也存在以下两方面的问题:第一、基本运算不过关。绝大多数同学都知道解方程的方法,但却不能保证计算的准确性。这里也透露出新教材的一个特点:很重视学生思维上的培养,却忽视了基本计算能力的训练,似乎认为每个学生都能达到一学就会的理想境界。第二,解方程的方法不灵活。学习了三种方法之后,知道了公式法是最通用的方法,所以也就认为公式法绝对比配方法好用多了。但实际并非完全如此,通用并不意味着简单。

三、教学后的及时改进

为了解决"配方法、公式法"谁更好用?很多学生都明白公式法是在配方法上基础上的推导出来,并且有一个通用公式可算,所以学生潜意识已经认为公式法更简单

通过现场测试,很多同学又一次回到首先移项,接着只能用公式法的做法上。其实,在这里学生让没有抓住配方法的精髓。这两题依然是可以用配方法,而且很快就可以解出来。

四、反思

1、备课应该更加务实。

在以后教学中,我要吸取这一章教学的有益经验。不仅要抓整体,更要注意一些重要细节,及时发现教学工作中可能存在的隐性问题。例如:按照惯例,对于应用题学生的难点都在于如何找等量关系和列方程,故最容易忽视的是解方程的细节。例如上文中的例4,很多学生在学习公式法之后,都会很自然将方程的左边展开,继而使用公式法,从而解方程会变得十分复杂。

2、在教学中如何能够使学生学得简单,让学生的学习热情高涨。

五、教材的独到之处

教材有很多闪光点,让人耳目一新,极大调动了学生创造热情。例如课本上很多应用题都来源生活,贴近学生实际,增强了学生应用数学的意识和能力。

例如1:新华商场销售某种冰箱,每台进货价为2500元。市场调研表明:当销售价为2900远时,平均每天能销售8台;而当销售价每降低50元时,平均每天就能多售出4台。商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?

2、如图,在一块长92米、宽60米的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成面积均为885平方米的6个矩形小块,水渠应挖多宽?

3、某农场要建一个长方形的养鸡场,鸡场的一边*墙(墙长25米),另三边用木栏围成,木栏长40米。

(1)鸡场的面积能达到180平方米吗?能达到200平方米吗?

(2)鸡场的面积能达到250平方米吗?

如果能,请你给出设计方案;如果不能,请说明理由。

在这里我重点谈谈第3题;这是一个很现实的生活问题,很能调动学生的创造热情,但同时很容易被生活中的经验所蒙蔽。很多同学认为,要使鸡场的面积最大,当然要把25米的墙完全利用起来,所以最大的面积应该是平方米,故很快可以解决问题,鸡场的面积能达到180平方米,不可能达到200平方米。实际上当真如此吗?这时引导同学利用数学知识,构建数学模型来解决问题。问题中设问"能达到的200平方米吗?"。设这时的养鸡场宽为X米,则养鸡场的长为(40-2X)米,根据题意,可得到,经过计算,,从而得出一个出乎意料的结果:不仅能达到200平方米,而且养鸡场的墙体不需完全利用,只需要它的一部分,这时学生体会到,即使整面墙都用上,它的面积并不是最大的。

一元二次方程教案1000字精选


避免过分追求叙述严谨而影响学生对基本内容的理解,教案和老师都是课堂上缺一不可的。教师编写教案是要依据教学大纲和教科书来编写的,怎样才能写出一篇有助于教学的教案呢?你也许需要"一元二次方程教案"这样的内容,欢迎阅读,希望你能够喜欢并分享!

一元二次方程教案 篇1

1、使学生初步理解二元一次方程与一次函数的关系

2、能根据一次函数的图像求二元一次方程组的近似值

3、能解二元一次方程组的方法求两条直线的交点坐标

学习重点:

1、用作图像法求二元一次方程组的近似值

2、用解二元一次方程组的方法求两条直线的交点坐标

学习难点:

1、做图像时要标准、精确,近似值才接近

2、解二元一次方程组时计算准确,方法适宜

学习方法:

先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

自主学习部分:

问题1。(1)方程x+y=5的解有多少组?写出其中的几组解。

(2)在直角坐标系中分别描出以上这些解为坐标的点,它们在一次函数y=5-x的图像上吗?

(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?

(4)以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=5-x的图像相同吗?

(5)由以上的探究过程,你发现了什么?

问题2。(1)在同一个直角坐标系内分别作出一次函数y=5-x和y=2x-1的图像,这两个图像有交点吗?如果有,写出交点坐标?

(2)一次函数y=5-x和y=2x-1的交点坐标与方程组的解有什么关系?你能说明理由吗?

(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

合作探究:

1、用做图像的方法解方程组

2、用解方程的方法求直线y=4-2x与直线y=2x-12交点

篇三:xx公式法解二元一次方程教案

知识目标

了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

能力目标

通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

情感目标

通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

教学重点

二元一次方程组的含义

教学难点

判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

教学过程

一、引入、实物投影

1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:累死我了,小马说:你还累,这么大的个,才比我多驮2个老牛气不过地说:哼,我从你背上拿来一个,我的包裹就是你的2倍!,小马天真而不信地说:真的?!同学们,你们能否用数学知识帮助小马解决问题呢?

2、请每个学习小组讨论(讨论2分钟,然后发言)

这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)

师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的。项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)

师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程

注意:这个定义有两个地方要注意①、含有两个未知数,②、含的次数是一次

练习

下列方程有哪些是+2y=1xy+x=13x-=5x2-2=3x

xy=12x(y+1)=c2x-y=1x+y=0

二、议一议、

师:上面的方程中x-y=2的x含义相同吗?

篇四:xx公式法解二元一次方程教案

一。教学目标

(一)教学知识点

1、代入消元法解二元一次方程组。

2、解二元一次方程组时的消元思想,化未知为已知的化归思想。

(二)能力训练要求

1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。

(三)情感与价值观要求

1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。

2、培养学生合作交流,自主探索的良好习惯。

二。教学重点

1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。

三。教学难点

1、消元的思想。

2、化未知为已知的化归思想。

四。教学方法

启发自主探索相结合。

教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。

五。教具准备

投影片两张:

一元二次方程教案 篇2

第1教时

教学内容: 12.1 用公式解一元二次方程(一)

教学目标:

知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。

教学重、难点与关键:

重点:一元二次方程的意义及一般形式.

难点:正确识别一般式中的“项”及“系数”。

教辅工具:

教学程序设计:

程序

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

学生看投影并思考问题

通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

探究新知1

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含义?

(3)什么叫做分式方程?

2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.

整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

3.练习:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

(3)

(4)6x2=x;

(5)2x2=5y;

(6)-x2=0

4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.

一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.

一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.

5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.

讨论后回答

学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,

独立完成

加深理解

学生试解

问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫

反馈训练应用提高

练习1:教材P.5中1,2.

练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:.

(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.

要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.

小结提高

(四)总结、扩展

引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.

2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.

3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.

学生讨论回答

布置作业

1.教材P.6 练习2.

2.思考题:

1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

反思

一元二次方程教案 篇3

篇一:xx公式法解二元一次方程教案

教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页

教学目标

(1)基础知识与技能目标:会用代入消元法解简单的二元一次方程组。

(2)过程与方法目标:经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法。

(3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。

教学重、难点关键

教学重点:用代入消元法解二元一次方程组

教学难点:探索如何用代入消元法解二元一次方程组,感受消元思想。

教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。学生分析授课对象为少数民族地区的七年级学生,基础知识薄弱,特别是对一元一次方程内容掌握的不够透彻,再加上厌学现象严峻,团结协作的能力差,本节课设计了他们感兴趣的篮球比赛和常用的消毒液作为题材来研究二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。

教学内容分析:本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法代入消元法。并初步体会解二元一次方程组的基本思想消元。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。初中阶段要掌握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。

教具准备教师准备:ppt多媒体课件投影仪

教学方法本节课采用问题引入探究解法归纳反思的教学方法,坚持启发式教学。

教学过程

(一)创设情境,导入新课篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

(二)合作交流,探究新知第一步,初步了解代入法1、在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演①设胜的场数是x,负的场数是y

x+y=22

2x+y=40

②设胜的场数是x,则负的场数为22-x

2x+(22-x)=40

2、自主探究,小组讨论那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

3、学生归纳,教师作补充上面的解法,第一步是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

一元二次方程教案 篇4

尊敬的各位评委老师们,大家好:

今天我说课的课题是人教版九年级数学上册第21章第三节第三课时《实际问题与一元二次方程之面积问题》。下面我将从教材分析、教学目标、重点难点、学情分析、教法学法、教学过程几方面进行说课。

一、教材分析:

在学习本节课之前,学生已经学会了用一元二次方程解决传播问题,增长率问题。所以本节课对学生来说并不陌生。通过本节课的学习,学生不仅继续对一元二次方程的解法加以巩固,而且会用一元二次方程解决面积问题,给以后用二次函数解决实际问题打下基础。因此,它具有承上启下的作用。

二、教学目标:

根据本节课的内容特征和新课标要求以及九年级学生的认知水平确定本节课的教学目标如下:

知识与技能:1.根据具体问题中的数量关系,列出一元二次方程解决应用题。2. 根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.3. 能根据具体问题的实际意义检验结果是否合理。

过程与方法:利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.提高逻辑思维能力和分析问题,解决问题的能力。

情感,态度与价值观:体会数学知识的应用价值,提高学习数学的兴趣,了解数学对促进社会进 步和发展人类理性精神的作用。

三、教学重点、难点:

重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题. 难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.

四、学情分析

1、知识掌握方面:学生对列方程解应用题的一般步骤已经很熟悉,适合自主探究、合作交流的数学学习方式。

2、学生年龄特点:九年级学生具有丰富的想象力、好奇心和好胜心理。容易开发他们的主观能动性,适合由特殊到一般的探究方式。

五、教法学法:

教法:根据学生的实际情况和本节课的特点,为了实现教学目标、有效的突出重点、突破难点,我将采用“探索、归纳与合作交流”相结合的方法,以学生主动参与为前提、自主学习为途径、合作交流为形式,培养学生动脑、动手、合作、交流,为学生的终身学习奠定基础。

学法:突出自主探究、合作交流的数学学习方式,不但让学生“学会”,还要让学生“会学”。

六、教学程序:

(一)、复习旧知,导入新课 衔接自然导入本节课要学习的面积问题。

(二)、小组合作,探究新知

1.学生活动:某学校准备修建一个面积为200平方米的矩形花园,它的长比宽多10米。设花圃的宽为X 米,则可列方程为:

X(X+10)=200

【设计意图:由具体简单的问题激起学生的兴趣。】

2.例题讲解:先设置了三个问题让同学们思考:(1) 本题中有哪些数量关系?

(2)正中央是一个与整个封面长宽比例相同的矩形如何理解?

(3)如何利用已知的数量关系选取未知数并列出方程?

再点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,进而用两种方法解答。

解法(一):设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,中央矩形的长为(27-18x)cm,宽为(21-14x)cm.进而用两种方法解答。

(27-18x)(21-14x)=×27×21

解法(二):设中央矩形的长为9Xcm,宽均为7Xcm.

9X*7X=21.3

解答学生自己完成

【设计意图:让学生一题多解,训练思维的灵活性,其次还需学生正确细心地解方程】

(三)小试牛刀:用多媒体出示两道习题让学生练习,顺路突破重点。

(四)应用拓展:让学生用两种方法解答,训练思维的严密性。

【设计意图:及时练习和拓展,让学生更加深刻理解面积问题中的等量关系,从而解决本节课教学难点,同时提高学生对问题的分析能力。】

(五)归纳小结,浅谈收获

(六)布置作业及补充练习

【设计意图:让学生课后自觉复习巩固本节课所学知识。】

我的说课到此结束,谢谢大家!

一元二次方程教案 篇5

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。

根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。

通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。

通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

(二)重点、难点

一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

(三)教学目标

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

一元二次方程教案 篇6

各位老师,今天我说课的内容是:22.3实际问题与一元二次方程第二课时,下面,我从教材分析、教学目的分析、教法分析、教材处理、教学流程等方面对本课的设计进行简要说明:

一、教材分析:

1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:

(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

(2)能根据具体问题的实际意义,检验结果是否合理;

(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:

(1)重点:列一元二次方程解与面积有关问题的应用题。

(2)难点:发现问题中的等量关系。

二.教法、学法分析:

1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

1、活动1复习回顾解决课前参与

2、活动2封面设计问题的探究

3、活动3草坪规划问题的延伸

4、活动4课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1复习回顾解决课前参与,由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

活动2封面设计问题的探究,通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3草坪规划问题的延伸,放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4课堂回眸,本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

5、作业布置:共3个题目,前两个为必做题,全员均作;最后一个选作题,可供学有余力学生能力提升用。

一元二次方程教案 篇7

一、教学目标

【知识与技能】

学生知道一元二次方程根与系数的关系,并利用根与系数的关系求出两根之和、两根之积。

【过程与方法】

学生能够借助问题的引导,发现、归纳并证明一元二次方程根与系数的关系,在探究过程中,感受由特殊到一般地认识事物的规律。

【情感态度价值观】

通过探索一元二次方程的根与系数的关系,培养观察分析和综合、判断的能力。激发发现规律的积极性,鼓励勇于探索的精神。

二、教学重难点

【教学重点】

一元二次方程根与系数关系的证明。

【教学难点】

发现一元二次方程根与系数的关系。

三、教学过程

(一)引入新课

提出问题:一元二次方程的根与方程中的系数之间有怎样的关系呢?

师生活动:复习回顾一元二次方程的一般形式以及求根公式。

(二)探索新知

【教案】一元二次方程数学教学思考之二


我们多多少少都是读过一些范文的,这些范文里面有很多优秀的地方值得我们去学习,通过阅读范文我们可以学会将内心情感通过文字表达。能在一定程度提升我们的语文水平,那么,您看过哪些值得借鉴的优秀范文吗?经过搜索和整理,76范文网(fw76.com)小编为大家特呈现“【教案】一元二次方程数学教学思考之二”,欢迎阅读,希望您能阅读并收藏。

一元二次方程的应用是在学习了前面的一元二次方程的解法的基础上,结合实际问题,讨论了如何分析数量关系,利用相等关系来列方程,以及如何解答。

列方程解决实际问题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

在本章教学中我注意分散教学难点,比如说,在学习增长率问题时,我先设计了这样一组练习:一个车间二月份生产零件500个,三月份比二月份增产10%,三月份生产-----------个零件,如果四月份想再增产10%,四月份生产零件-----------个。如果增产的百分率是x,那三月份和四月份各能生产零件多少个?通过分散教学难点,引导学生理解题意,从而达到满意的教学效果。

在本章教学中我还注意对学生进行学法的指导。比如说,在做习题7.12第2题时,有的同学想象不出图形,就应引导他们画出示意图;在比如学习最后一个例题时,面对那么多的量,并且是运动中的量,许多学生无从下手,此时就要引导学生把量在图形中先标示出来,在慢慢分析题中的数量关系。在分析问题时,要强调当设完未知数,那它就是已知数,参与量的标示。

总之,在教学中通过学生的自主探究、小组间的合作交流、教师的及时点拨,进一步提高学生分析问题、解决问题的能力。

热门教案: 一元二次方程数学教学反思 月度范文精选


我们一定都有看过一些范文,优秀的范文可以让我们积累相关的知识,阅读范文可以锻炼文笔,提高写作能力。优秀的范文更能受到大家的关注,你会借鉴优秀的优秀范文模板吗?下面是76范文网(fw76.com)小编为大家特整理的“热门教案: 一元二次方程数学教学反思 月度范文精选”,希望能对您有所帮助,请收藏。

从本节课开始授一元二次方程的概念、解法及其应用。其中本堂课关于一元二次方程概念的介绍,其一般形式的写法是后续内容的基础,虽然简单但非常重要。

关于一元二次方程的概念的引入。我对课本做了两点变动:一是增加一例趣味性故事,引出数学问题,从而列出方程;二是将课本上关于生产总值的例子改成中考升学考上重点中学人数问题。以上变动主要是基于以下考虑:一是创设情境,激发学生的学习兴趣,又能学习从实际问题中归纳出数学模型;二是课本上的生产总值问题感觉离学生比较遥远。反思本节课的教学,我觉得有以下不足:

引入概念时的例子太多,有点难,在解应用题方面花费了一些时间,有点“喧宾夺主”,课前的例子应尽可能的简单,只要让学生能列出一元二次方程即可。

对于一元二次方程的一般形式,二次项系数、一次项系数、常数项这些内容,我觉得时间还比较少,应多加练习,特别是对后进生,如果一元二次方程已经写成一般形式,他们找二次项系数、一次项系数、常数项没有困难。如果需要进一步化简整理成一般形式,他们开始出错。问题出在他们基础没打好,化简整理过程中出现诸如移项时项的符号出错的问题,应多加练习指导。

[实用课件] 一元一次方程教学反思(写作示例)


作为学生,阅读大量的范文是必不可少的,这些范文能给我们带来很大的帮助,阅读范文可以锻炼文笔,提高写作能力。高质量的范文能供更多人参考,你是否在寻找有关优秀范文的模板呢?为满足您的需求,76范文网(fw76.com)小编特地编辑了“[实用课件] 一元一次方程教学反思(写作示例)”,仅供参考,欢迎大家阅读。

在小结里提出解一元一次方程分为两大步,目的是进一步强调解一元一次方程的指导思想是化归思想.从而使学生明确最简方程是解一元一次方程的化归目标,而解一元一次方程的过程是,首先寻求所给方程与目标的差异,然后设法消除差异,直至达到化归目标,即化为最简方程,求出方程的解.这里化归的具体方法是去分母、去括号、移项、合并同类项等.这样处理,可使学生在解题时思路明确,有章可循.

去括号解一元一次方程的教学反思


教案一直保存在“他”的脑海里,当要讲新课程的时候,老师都会带好自己的教案。教案可以帮助老师顺利解决在课堂上突发的教学情况。你积累了多少高质量的教案模版呢?有请阅读栏目小编为你编辑的去括号解一元一次方程的教学反思,强烈建议你能收藏本页以方便阅读!

去括号解一元一次方程的教学反思 篇1

这一节课的教学,是继续讨论如何解方程的问题,它包括两方面的内容:①重点讨论解方程中的“去括号”,②根据实际问题列方程。

因为解方程的过程就是不断地对方程进行化简的过程,只有找准了方程的特点,运用相应的方法,就能使相对繁一点的方程向x=a形式转化。所以在讲学稿设计上,首先给出学生熟悉的三个方程,让学生根据方程的结构,想到解题的方法,以达到复习和巩固前面学过解方程的三个步骤,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成,步骤数量在逐渐增加,那么今天是否又要学习新的步骤呢?一个悬念,使学生达到温故而知新。

接下来出现一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生在化归思想影响下想到要去括号。那么去括号的依据是什么呢?去括号时特别要注意的又能什么呢?当学生通过一定数量的练习后,去括号解方程的一些问题(错误)出现了,主要的有两点,

①括号外面的系数漏乘括号里面的项,

②去括号时该变号的没变号。

教学片段:学生对去括号知识只会背法则不会运用。

师:3x-7(x-1)=3+2(x-3)怎样去括号?

生1:根据去括号法则,括号外是正号,去括号内各项不变号,括号外是分数,括号内各项变号,结果是:3x-7x+1=3+2x-6

师:如果括号前有分数怎样去括号?

生2:根据乘法的分配律去括号,这题去括号是3x-7x-7=3+2x-3

生3:根据乘法分配律,同号得正,异号得负,这道题去括号是:3x-7x+7=3+2x-6。师:正确。

师:怎样移项。

生:把未知的项移到方程左边,已知项移到方程右边,结果是:3x-7x+2x=3-6+7

师:移项要注意什么?

生:变号,这题移项为3x-7x-2x=3-6-7

师:怎样合并?

生:系数相合并:2x=-10 x=-5

这一片段中,生只会背法则不会用法则,有的根据乘法分配律,数字不同括号内各项相乘,有的符号出错,再有移项不变号,合并计算比较差,教师针对这一问题,虽然作强调,但落实还不够。

在今后的教学中,一是要深钻大钢和教材,精心设计每一节课,二是要注意教学课的特点,注重教学的基本技能和技巧,再一个对于简单的教学内容让生自己自学完成任务,教师个别指导,对于较难一点的内容首先让学生自主探究发现问题,有不懂的问题,教师再作指导,让学生养成动手动脑的习惯。

去括号解一元一次方程的教学反思 篇2

过程:考虑到学生的差异性,设计上两小题呈现了阶梯性。此题是作为巩固新知的习题,让学生自主完成,教师巡视、指导,两位学生上黑板板演,师生共同评价。

反思:这一片段中,学生对解题的步骤较熟悉,但在去括号解方程过程中出现了错误,主要有:括号外面的系数漏乘括号里面的项,去括号时该变号的没变号。再有移项不变号,合并计算比较差。教师针对这一问题,对各步的理论依据,注意事项虽然作了强调,但问题仍存,可见落实还不够,还需加强,还需多练。

总之,本节课后我认识到了要提高教育教学的有效值,教师备课时要深入教材,理解教材的编排意图,挖掘出本课的核心知识及思想方法,活用教材,据学科特点和实际学情精心设计出符合学生发展的教学内容。上课时要走出教材,注重教学的基本技能和技巧,引导、指导学生尝试自己学习新知识,再运用新知识解决问题。在实施的过程中还要随时关注全体学生的发展,真真正正做到以人为本,以学生的`发展为本。

教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将悉心耕耘,积极进取,博采众长,提高自己,让我教的每一个孩子更加优秀。

去括号解一元一次方程的教学反思 篇3

人教版七年级上册P93—94的《解一元一次方程——去括号》这一节课的内容是继续讨论如何列、解方程的问题,它包括两方面:①根据实际问题列方程,②重点讨论解方程中的“去括号”。它先从一个实际问题出发,引导学生用方程的思想去通过建立模型列方程解决问题。在解方程中遇到了有括号的新形式,从而引发思考,当方程中有括号时,如何变形使方程最终简化为x=a的形式。其重点在于用去括号等步骤化简方程使之最终转化为x=a和在解决实际问题时,弄清题目的已知量、未知量,找出相等关系列方程。难点是学生能自己看问题找相等关系列出方程,并能正确解出方程。

活动1:复习回顾。

(1)一元一次方程的解法我们学了哪几步?每步要注意什么?

(2)练习:解方程9—3x=—5x+5此活动的目的温故旧知,为获取新知作铺垫。活动中我先用媒体展示回顾中的(1),学生回忆思考,然后回答。再展示练习(2),学生口述解此方程的步骤和过程,通过设问点明每一步的依据及注意事项。学生在此活动中积极思考,积极参与。但集体回答较多,我没能够充分深入全面了解学生原有知识水平及思维能力和分析解决问题能力了解学生的原有知识层次。是

反思:此题作为具有新承上接下的作用,也是教师的好契机。应该先让学生自主解答,然后请一两位同学板演或主讲,师生共同

评价,这样教师可及时深入了解学情,了解学生对用移项、合并同类项、系数化为1解一元一次方程的掌握情况和熟练成度等。

活动2:列一元一次方程来解实际问题。

问题:某校去年加强节能措施,提倡节约用电,去年下半年与上半年相比,月平均用电量减少1000度,全年用电9万度,该校去年上半年每月平均用电多少度?

过程:师通过提问助学生分析,列出方程:若设上半年每月平均用电x度,则下半年每月平均用电(x-1000)度,上半年共用电6x度,下半年共用电6(x—1000)度。本题的一个等量关系是:上半年用电量+下关年用电量=90000,所以,可列方程6x+6(x—1000)=90000。

反思:“找相等关系”是本节学生认知上的一个难点,教师没能很好分散及突破。这块内容教师过于承办,得出结论有些急促,学生对题意的理解和方程的来源与各个量的意义并非人人皆透、个个都明。因为应用题能否顺利解决和学生的阅读理解能力、生活经历、社会阅历有很大关系,所以应先组织学生齐读或请一同学朗读,让学生在读书中理解题意,弄清问题中的已知量和未知量,同时可感受数学就在身边的生活中,增强其爱数学的情感。然后放手让学生自己讨论交流,最后找出等量关系列出方程,接着再解一元一次方程并作答,教师只需加以强调解题的规范性和过程的注意事项。待学生解答完后让一两个学生进行讲解:从何理解题意、怎么分析、怎样解答,教师与其余学生共同评价主讲学生的思路,在学生暴露思维的过程中发展学生的思维品质。这样教师既能更进一步了解学

生,又能让师生、生生交流更充分,更能体现出把课堂还给学生,以学生为主体,教师为主导的新课程理念。

活动3:解方程

背景:在分析实际问题的题意,找到等量关系列出方程6x+6(x—1000)=90000之后学生能想到用去括号把方程化简得

6x+6x—6000=90000。

过程:

师:接下来如何变形?生1:合并同类项生2:移项

师按生2步骤板演。生1:(困惑)

反思:此处生1带着困惑被拽入生2的思维行列,教师忽略了生1的想法,也许会厄杀了生1思维的积极性。教师应尊重生1,可让生

1、生2按自己的思路解题。

生1方法:合并同类项,得

12x—6000=90000移项,得

12x=90000+6000合并同类项,得

12x=96000系数化为1,得

x=8000生2方法:移项,得

6x+6x=90000+6000合并同类项,得

12x=96000系数化为1,得

x=8000完后组织学生进行观察、比较,学生自会发现生1过程中出现两次合并同类项。生2解法简捷省时少力,较生1解法有优越性,从而增强了择优意识,加强了算法程序化的思想。

活动4:巩固新知:解下列方程

去括号解一元一次方程的教学反思 篇4

人教版七年级上册P96-97的《解一元一次方程----去括号》这一节课的内容是继续讨论如何列、解方程的问题,它包括两方面:①根据实际问题列方程,②重点讨论解方程中的“去括号”。它先从一个实际问题出发,引导学生用方程的思想去通过建立模型列方程解决问题。在解方程中遇到了有括号的新形式,从而引发思考,当方程中有括号时,如何变形使方程最终简化为x=a的形式。其重点在于用去括号等步骤化简方程使之最终转化为x=a和在解决实际问题时,弄清题目的已知量、未知量,找出相等关系列方程。难点是学生能自己看问题找相等关系列出方程,并能正确解出方程。

20xx年11月18日下午我参加了东方市教育局组织的送教下乡活动,在感城中学上了此课。回顾整堂课,虽无大的迭宕起伏,但也顺顺利利落实教学任务,在上课过程中,基本是都能按学生的实际情况设计并进行组织教学。重点、难点处理得当,知识主线鲜明,同时借助媒体有效地整合教学内容,是一堂传统与课改相结合的好课。但同时也受实际多种因素的影响,尤其是了解学生真实需求及学生的接受获取能力等比较极限,在把教材真正转化成为学生行为中没有能充分推动学生参与。总之,本堂课成功有之,缺憾亦存。为能促进交流,促已成长,现摘取片段进行回顾。

活动1:复习回顾。

(1)一元一次方程的解法我们学了哪几步?每步要注意什么?(2)练习:解方程9-3x=-5x+5此活动的目的温故旧知,为获取新知作铺垫。活动中我先用媒体展示回顾中的(1),学生回忆思考,然后回答。再展示练习(2),学生口述解此方程的步骤和过程,通过设问点明每一步的依据及注意事项。学生在此活动中积极思考,积极参与。但集体回答较多,我没能够充分深入全面了解学生原有知识水平及思维能力和分析解决问题能力了解学生的原有知识层次。是

反思:此题作为具有新承上接下的作用,也是教师的好契机。应该先让学生自主解答,然后请一两位同学板演或主讲,师生共同评价,这样教师可及时深入了解学情,了解学生对用移项、合并同类项、系数化为1解一元一次方程的掌握情况和熟练成度等。

活动2:列一元一次方程来解实际问题。

问题:某校去年加强节能措施,提倡节约用电,去年下半年与上半年相比,月平均用电量减少1000度,全年用电9万度,该校去年上半年每月平均用电多少度?

过程:师通过提问助学生分析,列出方程:若设上半年每月平均用电x度,则下半年每月平均用电(x-1000)度,上半年共用电6x度,下半年共用电6(x-1000)度。本题的一个等量关系是:上半年用电量+下关年用电量=90000,所以,可列方程6x+6(x-1000)=90000。

反思:“找相等关系”是本节学生认知上的一个难点,教师没能很好分散及突破。这块内容教师过于承办,得出结论有些急促,学

生对题意的理解和方程的来源与各个量的意义并非人人皆透、个个都明。因为应用题能否顺利解决和学生的阅读理解能力、生活经历、社会阅历有很大关系,所以应先组织学生齐读或请一同学朗读,让学生在读书中理解题意,弄清问题中的已知量和未知量,同时可感受数学就在身边的生活中,增强其爱数学的情感。然后放手让学生自己讨论交流,最后找出等量关系列出方程,接着再解一元一次方程并作答,教师只需加以强调解题的规范性和过程的注意事项。待学生解答完后让一两个学生进行讲解:从何理解题意、怎么分析、怎样解答,教师与其余学生共同评价主讲学生的思路,在学生暴露思维的过程中发展学生的思维品质。这样教师既能更进一步了解学生,又能让师生、生生交流更充分,更能体现出把课堂还给学生,以学生为主体,教师为主导的新课程理念。

活动3:解方程

背景:在分析实际问题的题意,找到等量关系列出方程6x+6(x-1000)=90000之后学生能想到用去括号把方程化简得

6x+6x-6000=90000。

过程:

师:接下来如何变形?生1:合并同类项生2:移项

师按生2步骤板演。生1:(困惑)

反思:此处生1带着困惑被拽入生2的思维行列,教师忽略了生1的想法,也许会厄杀了生1思维的积极性。教师应尊重生1,可让生

1、生2按自己的思路解题。

生1方法:合并同类项,得

12x-6000=90000移项,得

12x=90000+6000合并同类项,得

12x=96000系数化为1,得

x=8000生2方法:移项,得

6x+6x=90000+6000合并同类项,得

12x=96000系数化为1,得

x=8000完后组织学生进行观察、比较,学生自会发现生1过程中出现两次合并同类项。生2解法简捷省时少力,较生1解法有优越性,从而增强了择优意识,加强了算法程序化的思想。

活动4:巩固新知:解下列方程

去括号解一元一次方程的教学反思 篇5

本节课的数学安排是学习用去括号解一元一次方程,并初步根据实际问题列方程,本节课的重难点是学生能自己看问题找相等关系列出方程,并能正确解出方程。

教学成功之处:1.复习巩固去括号法则有的放矢,恰到好处,能降低本节课的难度,如去括号①3x-7(x-1)= ②3-2(x+3)= ;本节学习解一元一次方程的重点是去括号,方法同以往一样。

②经历方程解决实际问题的过程,体会方程是现实世界的有效数学模型。

不足之处:教学过程中利用背景材料创设情境列一元一次方程来解实际问题。

片断:如某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

师:主要是引导生分析:设上半年每月平均用电X度,则上半年共用电 ,若下半年平均每月用电 度,则下半年共用电 度。

生:回答后列出方程;这个片断应该放手让生自己讨论,自己得出等量关系。最好让一两个学生上去讲解:你是怎么理解题意、怎么分析的,从而得出:

上半年每月用电量×上半年总月数+下半年每月用电量×下半年总月数=150000课后我反复思考,这块内容教师过于包办,得出结论有些勉强应该放手让学生讨论交流后得出一元一次方程,然后在解一元一次方程并作答,师只需加以强调。

总之这节课后我认为自己讲的过于详细,应当再精讲少讲,让学生尝试自己学习新知识,自己再运用新知识解决实际问题

总之,本节课后我认识到了要提高教育教学的有效值,教师备课时要深入教材,理解教材的编排意图,挖掘出本课的核心知识及思想方法,活用教材,据学科特点和实际学情精心设计出符合学生发展的教学内容。上课时要走出教材,注重教学的基本技能和技巧,引导、指导学生尝试自己学习新知识,再运用新知识解决问题。在实施的过程中还要随时关注全体学生的发展,真真正正做到以人为本,以学生的发展为本。

教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将悉心耕耘,积极进取,博采众长,提高自己,让我教的每一个孩子更加优秀 。

去括号解一元一次方程的教学反思 篇6

这一节课的教学,是继续讨论如何解方程的问题,它包括两方面的内容:

①重点讨论解方程中的“去括号”。

②根据实际问题列方程。

因为解方程的过程就是不断地对方程进行化简的过程,只有找准了方程的特点,运用相应的方法,就能使相对繁一点的方程向x=a形式转化。所以在讲学稿设计上,首先给出学生熟悉的三个方程,让学生根据方程的结构,想到解题的方法,以达到复习和巩固前面学过解方程的三个步骤,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成,步骤数量在逐渐增加,那么今天是否又要学习新的步骤呢?一个悬念,使学生达到温故而知新。

接下来出现一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生在化归思想影响下想到要去括号。那么去括号的依据是什么呢?去括号时特别要注意的又能什么呢?当学生通过一定数量的练习后,去括号解方程的一些问题(错误)出现了,主要的有两点,

①括号外面的系数漏乘括号里面的项。

②去括号时该变号的没变号。

在课堂练习中,为了避免解方程的单调无味,安排了一定量的填空题,目的就是给学生留出思维发展空间,促进他们积极思考,在阅读填空题的过程中,培养他们发现问题和解决问题的能力,从中又能提高学生解题的能力和解题中避免一些不该出现的错误。